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Low Reynolds number k–� model for near-wall �ow
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SUMMARY

A wall-distance free k–� turbulence model is developed that accounts for the near-wall and low Reynolds
number e�ects emanating from the physical requirements. The model coe�cients=functions depend non-
linearly on both the strain rate and vorticity invariants. Included di�usion terms and modi�ed C�(1; 2)
coe�cients amplify the level of dissipation in non-equilibrium �ow regions, thus reducing the kinetic
energy and length scale magnitudes to improve prediction of adverse pressure gradient �ows, involving
�ow separation and reattachment. The model is validated against a few �ow cases, yielding predictions
in good agreement with the direct numerical simulation (DNS) and experimental data. Copyright ?
2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The predictive capability of the complex turbulent �ows encountered in engineering applica-
tions can be substantially enhanced by improved turbulence modelling. In principle, the high
Reynolds number model is incapable of properly yielding near-wall resolution adhering to
wall damping and viscous e�ects. Abandoning the wall function approach to patch near-wall
regions, a large number of low Reynolds number (LRN) modi�cations have been proposed
to two-equation turbulence closures where the integration up to the wall is extremely impor-
tant. However, the modelling of near-wall turbulence in many existing LRN models usually
involves distance to wall as an explicit parameter [1–6]. This renders the model often in-
appropriate to simulating �ows with complex geometry, the wall distance of which becomes
cumbersome to de�ne. A remedy to this �aw is to develop a model which implicates no
explicit wall distance while integrating it toward the solid surface [7–11]. The physical ratio-
nale behind the LRN model, independent of the wall topology, can be ascribed to nontrivial
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suitability to wall functions and an achievable reduction in the programming=running time by
integrating the LRN model to the wall [12].
An LRN k–� turbulence model is developed, requiring no wall function=distance parameter

that bridges the near-wall integration. To enhance dissipation in non-equilibrium �ow regions,
the model coe�cients C�(1;2) depend non-linearly on both the rotational and irrotational strains.
The cross-di�usion terms in the � transport equation reduce the turbulent kinetic energy and
length scale magnitudes to improve prediction of adverse pressure gradient �ows involving
separation and reattachment. The wall singularity is removed by using an appropriate time
scale that never falls below the Kolmogorov (dissipative eddy) time scale, representing the
time scale realizability enforcement accompanied by the near-wall turbulent phenomena. An
eddy viscosity damping function is designed in terms of total kinetic energy, and the invariants
of strain rate and vorticity tensors. In addition, the turbulent Prandtl numbers �(k; �) are adjusted
such as to provide substantial turbulent di�usion in near-wall regions. In essence, the model
is tensorially invariant, frame-indi�erent and applicable to arbitrary topologies.
The performance of the new model is demonstrated through the comparison with experi-

mental and direct numerical simulation (DNS) data of well-documented �ows, consisting of
fully developed channel �ows, a �at plate boundary layer �ow with zero pressure gradient,
and a backward facing step �ow, respectively.

2. TURBULENCE MODEL

In collaboration with the Reynolds-averaged Navier–Stokes (RANS) equations, the proposed
model determines the turbulence kinetic energy k and its dissipation rate � by the following
transport relations:
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where the turbulent production term P= − �uiuj(@Ui=@xj) and E� is a secondary source term
designed to increase the level of � in non-equilibrium �ow regions. The Reynolds stresses
�uiuj are related to the mean strain rate tensor Sij through the Boussinesq approximation.
The symbolized �� is the pressure di�usion term, balancing the molecular di�usion in the
near-wall region [2, 13]. The eddy viscosity and the turbulence time scale are evaluated as

�T =C�f��kTt; Tt =

√
k2

�2
+ C2T
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where C�=0:09 and � represents the kinematic viscosity. The realizable time scale Tt prevents
the singularity at yn=0 in the dissipation equation, where yn is the normal distance from the
wall. The empirical constant CT =

√
2 associated with the Kolmogorov time scale is estimated

from the behaviour of k in the viscous sublayer [3].
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As a pragmatic device, the damping function f� is chosen to be a function of R�, given by

f� =f� + C�(1− f�); R� =

√
C�KT
��

f� = tanh[C�R�(1 + R�)]; KT = U ·U=2 + k
(4)

where C�=�CC�2� , �=C�Tt� and �= max(S;W ), containing the invariants S=
√
2SijSij and
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2WijWij. The mean strain rate and mean vorticity tensors Sij and Wij, respectively, are
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The quantity C�=0:5=(1 + Tt
√
S2 +W 2) is evaluated such that C� ≈C� in the logarithmic

region of a turbulent channel �ow, where TtS=TtW ≈ 3:3 [3].
Note that unlike the turbulence Reynolds number ReT = k2=��, the wall-distance free pa-

rameter R� is de�ned in terms of the total kinetic energy and strain rate=vorticity invariants.
In principle, no mean �ow Reynolds number enters the turbulent transport equations. How-
ever, the justi�cation herein is that the invariants � make good correspondence with the total
kinetic energy KT, thereby returning a numerically plausible formulation for the eddy viscosity
damping function. In fact, it is a di�cult task to devise f�=f�(ReT) that accords well with
the measured and DNS data.
The empirical function f� is valid in the whole �ow �eld, including the viscous sublayer

and the logarithmic layer. In the region close to the wall, the Reynolds stress −uv∼y3 and
k ∼y2. To preserve the correct cubic power-law behaviour of −uv, the damping function
needs to increase proportionally to y−1 in the near-wall region. Equation (4) con�rms that
as y → 0, R� ∼y and hence f�=O(C�) at the close proximity of the wall (i.e. f� claims
to increase like f� ∼y−1). As evinced by Figure 1 in comparison with the DNS data [13]
for fully developed turbulent channel �ows, the proposed function f�=1 remote from the
wall to ensure that the model is compatible with the standard k–� turbulence model. The use
of R� confronts the singularity at neither the separating nor the reattaching point in contrast
to the adoption of y+ = u	y=�, where u	 is the friction velocity. Consequently, the model is
applicable to separated and reattaching �ows.
The budgets of k and � from the DNS data con�rm that the role of turbulent di�usion in

the near-wall region is substantial. Accordingly, the Prandtl numbers �k and �� are modelled,
rather than being assigned constant values (unlike the commonly adopted practice with �k =1:0
and ��=1:3):

��=CT (4C� + f�); �k =
��

(1− C�f�) (6)

where f�=f�=(
√
�+f3� ). The distribution of � is depicted in Figure 1. The model coe�cients

�k and �� are developed such that su�cient di�usion is obtained in the vicinity of the wall
and in the core region of the �ow �k=��¿1 to eliminate the common drawback where the
turbulent di�usion of k overwhelms the di�usion of � with �k¡�� at [4]. Note that the
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Figure 1. Variations of f� and � with wall distance in channel �ow.

parameters=coe�cients associated with the turbulent Prandtl numbers �(k; �) have the values in
the range from 0 to 1. For instance, 0¡f�61, 0¡C�60:5 and 0¡�¡0:5. Therefore, the
violation of realizability and the occurrence of singularity problem in Equation (6) are out of
question.
Near-wall �ows show a tendency to underestimate the dissipation rate � due to the local

anisotropy of turbulence [14]. To enhance dissipation in such a situation the formulation is
developed with the assistance of Reference [10] as

C�1 = 1 + �; C�2 = 1:33C�1 (7)

It is appropriate to emphasize that the proposed relation indubitably is conducive to allowing
compatible changes in both C�1 and C�2 that account for the additional production of dis-
sipation by the anisotropy of turbulence. Remarkably, C�2=C�1 = 1:33, converging toward the
standard C�2-to-C�1 ratio (1:92=1:44≈ 1:33).
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The extra source term E� in Equation (2) is constructed from the cross-di�usion model [11]
as

E�=2
�T
Tt
max
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@xj
; 0

]
(8)

Obviously, the source term E� stimulates the energy dissipation in non-equilibrium �ows,
thereby reducing the departure of the turbulent length scale from its local equilibrium value
and enabling improved prediction of adverse pressure gradient �ows accompanied by �ow
separation and reattachment.
The pressure di�usion term �� in Equation (2) adjusts inherently with the limit of near-wall

balance in the � equation and can be derived as [10]
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Essentially, the compatibility relation mimics the di�usive nature of the pressure di�usion,
resembling the conventional cross-di�usion model [15]. It generates an additional source for �
in the bu�er zone. To receive positive bene�ts from the numerical reliability in the vicinity
of the wall, Equation (9) is deliberately modelled as
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where CT
√
�� is the Kolmogorov eddy energy scale. A close look at the entire contrivance

reveals that Equation (10) is equivalent to Equation (9) when ReT�2 and ��=0 as the
wall is approached. It seems likely that �� is prone to loose its in�uence outside the close
proximity of the wall due to the molecular di�usion alone, having agreement with the DNS.

3. COMPUTATIONS

To ascertain the e�cacy of the proposed model, a few applications to two-dimensional turbu-
lent �ows consisting of fully developed channel �ows, a �at plate boundary layer �ow with
zero pressure gradient, and a backward facing step �ow. For a comparison purpose, calcula-
tions from the original Chien (OCH) model [5] and the modi�ed Chien (MCH) model [6]
are included. A cell-centred �nite-volume scheme combined with an arti�cial compressibil-
ity approach [16] is employed to solve the �ow equations. A fully upwinded second-order
spatial di�erencing is applied to approximate the convective terms. A diagonally dominant al-
ternating direction implicit (DDADI) time integration method [17] is applied for the iterative
solution of the discretized equations. A multigrid method is utilized for the acceleration of
convergence [18].

3.1. Channel �ow

The computation is carried out for fully developed turbulent channel �ows at Re	=180
and 395, for which turbulence quantities are attainable from the DNS data [13]. Calculations
are conducted in the half-width of the channel, imposing cyclic boundary conditions except
for the pressure. For both cases, the length of the computational domain is 32
, where 
 is
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Figure 2. Mean velocity pro�les of channel �ow.

the channel half-width. A 96× 64 non-uniform grid re�nement is considered based on the grid
independence test. To ensure the resolution of the viscous sublayer the �rst grid node near
the wall is placed at y+ ≈ 0:3. Comparisons are made by plotting the results in wall units.
Figure 2 shows the velocity pro�les for di�erent models. Predictions of both the present

and MCH models agree well with the DNS data. The OCH model slightly overestimates the
mean velocity pro�le in the outer layer. Pro�les of turbulent shear stresses are displayed in
Figure 3. Agreement of all model predictions with the DNS data seems to be almost perfect.
Further examination of the model performances can be directed to the k+ pro�les as por-

trayed in Figure 4 for the near-wall region. As is evident, the present model prediction is
in broad accord with the MCH model and DNS data. On the contrary, the OCH model pre-
dicts a peak at a slightly shifted location. Figure 5 exhibits the pro�les of �+ from the three
computations. The present model provides a maximum �+ at the wall which is more in line
with the experimental and DNS data. In strong contrast, the OCH and MCH models indicate
misplaced local maxima.
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Figure 3. Shear stress pro�les of channel �ow.

3.2. Flat plate boundary layer �ow

The performance of the proposed model is further contrasted with the experimental data of the
�ow over a �at plate with a high free stream turbulence intensity. The test case is taken from
‘ERCOFTAC’ Fluid Dynamics Database WWW Services (http:==�uindigo.mech.surrey.ac.uk=)
preserved by P. Voke. Measurements down to x=1:495m which corresponds to Rex ≈ 94 000,
are made by J. Coupland at Rolls-Royce. The inlet velocity is 9:4m=s and the pressure gradient

is zero. The upstream turbulence intensity Tu=6:0%, de�ned as Tu=
√

2
3k=Uref , where Uref in-

dicates the reference velocity. The dissipation is set so that the decay of free stream turbulence
is in balance.
Computations begin 16cm ahead of the leading edge and symmetric conditions are applied.

The length and height of the grid are 1.6 and 0:3m, respectively. The near-wall grid node is
located at y+¡1:0, except the point at the leading edge (y+ =2:1). The grid size is 96× 64
and heavily clustered near the wall.
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Figure 4. Turbulence kinetic energy pro�les of channel �ow.

The predicted skin friction coe�cients are compared with the experimental data in Figure 6.
The overall performance in predicting the friction coe�cient is the best for the present model,
exhibiting an interesting feature that the transition starts at the right position and it is strong
enough. In contrast, both the OCH and MCH models, having the wall distance in the damping
functions provide earlier transition than that seen in the experiment. Seemingly, the agreement
between the computations and the experiment is fairly good toward the end of the transition
(e.g. beyond x=0:195m). However, the MCH model prediction is somewhat on a lower level
than the data show.

3.3. Backward facing step �ow

To validate the performance in complex separated and reattaching turbulent �ows, the present
model is applied to the �ow over a backward facing step �ow. The computation is conducted
corresponding to the experimental case with zero de�ection of the wall opposite to the step, as
investigated by Driver and Seegmiller [19]. The ratio between the channel height and the step
height h is 9, and the step height Reynolds number is Re=37500. At the channel inlet, the
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Figure 5. Dissipation rate pro�les of channel �ow.

Reynolds number based on the momentum thickness is Re�=5000. A 128× 128 non-uniform
grid is used for the computations and the maximum height of the �rst near-wall grid node is
at y+¡1:5. The distance x=h shown below is measured exactly from the step corner.
The inlet pro�les for all dependent variables are generated by solving the models at the

appropriate momentum thickness Reynolds number. Pro�les of mean velocity, shear stress and
turbulent kinetic energy at inlet are presented in Figure 7. The MCH and present models ensure
close adherence to the experimental data. The OCH model predicts the velocity �eld which
is in fair agreement with the measurement. However, this model exhibits some discrepancies
between the predictions and the data for the shear stress and turbulent kinetic energy pro�les,
especially in near-wall regions.
Computed and experimental friction coe�cients Cf along the step side wall are plotted in

Figure 8. As is observed, the OCH model gives the Cf distribution with a large overshoot
followed by a sudden drop in the immediate vicinity of the reattachment point. The positive Cf
that starts from x=h=0, is due to a secondary eddy which sits in the corner at the base of
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Figure 6. Streamwise skin friction coe�cient of boundary layer �ow.

Figure 7. Inlet pro�les for step �ow.

the step, inside the main recirculation region. The OCH model predicts a recirculation length
of 5.4. The corresponding predictions by the MCH and present models are 6.8 and 6.23,
respectively. The experimental value of the reattachment length is 6:26± 0:1, making a fairly
good correspondence with the present and MCH models.
The streamwise mean velocity pro�les at four representative positions are depicted in

Figure 9. Obviously, the predictions of all models are in good agreement with the exper-
iment. It is a bit nebulous that the inaccurate prediction of the Cf distribution by the OCH
model has little e�ect on the velocity pro�les. Comparisons are extended to the distributions
of the Reynolds shear stress and the corresponding turbulent kinetic energy at di�erent x=h
locations behind the step corner, as shown in Figures 10 and 11. A closer inspection of the
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Figure 8. Skin friction coe�cient along the step-side bottom wall.

Figure 9. Mean velocity pro�les at selected locations for step �ow.

distribution indicates that the present model predictions are in a broad agreement with the
experimental data. On average, the agreement is good in both the recirculation and recovery
regions.

4. CONCLUSIONS

The proposed turbulent model is wall-distance-free, tensorially invariant and frame-indi�erent.
Consequently, it is applicable to arbitrary topologies in conjunction with structured or
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Figure 10. Shear stress pro�les at selected locations for step �ow.

Figure 11. Kinetic energy pro�les at selected locations for step �ow.

unstructured grids. The model accounts for the distinct e�ects of low Reynolds number
and wall proximity. The potential importance of the damping functions is conspicuous. The
anisotropic production in the dissipation equation is accounted for substantially by modify-
ing the model constants C�(1;2) and adding cross-di�usion terms. The model is capable of
evaluating the �ow case entangling separation and reattachment.
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NOMENCLATURE

Cf friction coe�cient
C� eddy viscosity coe�cient
E� source term in dissipation equation
f�; f� viscous damping functions
h step height
k turbulent kinetic energy
KT total kinetic energy
P turbulent production term
ReT turbulent Reynolds number
R� wall-distance free parameter
S mean strain rate invariant
Tt realizable time scale
Tu turbulence intensity
t time
−uiuj Reynolds stresses
Ui mean velocity components
Uref reference velocity
W mean vorticity invariant
xi Cartesian co-ordinates
y+ non-dimensional normal distance from wall

Greek letters

� turbulent anisotropy
� turbulent dissipation
�; �T laminar and eddy viscosities
� molecular kinematic viscosity
� density
�� pressure di�usion term
� turbulent Prandtl number
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